Mitochondrial DNA typing screens with control region and coding region SNPs.
نویسندگان
چکیده
Mitochondrial DNA (mtDNA) analysis has found an important niche in forensic DNA typing. It is used with highly degraded samples or low-copy number materials such as might be found from shed hair or bones exposed to severe environmental conditions. The primary advantage of mtDNA is that it is present in high copy number within cells and therefore more likely to be recovered from highly degraded specimens. A major disadvantage to traditional forensic mtDNA analysis is that it is time-consuming and labor-intensive to generate and review the 610 nucleotides of sequence information commonly targeted in hypervariable regions I and II (HVI and HVII) of the control region. In addition, common haplotypes exist in HVI/HVII mtDNA sequences that can reduce the ability to differentiate two unrelated samples. In this report we describe the utility of two newly available screening assays for rapid exclusion of non-matching samples. The LINEAR ARRAY mtDNA HVI/HVII Region-Sequencing Typing Kit (Roche Applied Science, Indianapolis, IN) was used to type 666 individuals from U.S. Caucasian, African American, and Hispanic groups. Processing of the LINEAR ARRAY probe panels "mito strips" was automated on a ProfiBlot workstation. Observable variation in 666 individuals is reported and frequencies of the mitotypes within and between populations are presented. Samples exhibiting the most common Caucasian mitotype were subdivided with a multiplexed amplification and detection assay using eleven single nucleotide polymorphisms in the mitochondrial genome. These types of screening assays should enable more rapid evaluation of forensic casework samples such that only samples not excluded would be subjected to further characterization through full HVI/HVII mtDNA sequence analysis.
منابع مشابه
Ph . D . Mitochondrial DNA Typing Screens with Control Region and Coding Region SNPs ∗
Mitochondrial DNA (mtDNA) analysis has found an important niche in forensic DNA typing. It is used with highly degraded samples or low-copy number materials such as might be found from shed hair or bones exposed to severe environmental conditions. The primary advantage of mtDNA is that it is present in high copy number within cells and therefore more likely to be recovered from highly degraded ...
متن کاملGenetic Analysis of D-Loop Region of Mitochondrial DNA Sequence in Iranian Patients with Familial Adenomatous Polyposis (FAP): A Case-Control Study
Background and Objectives: Familial adenomatous polyposis (FAP) is an inherited disorder and a rare form of colorectal cancer. This disease appears equally in both sexes and its occurrence is more in the second or third decade of life. Mutations and alterations of the mitochondrial genome, especially the D-loop region, have been reported in various human tumors. But the exact role of these muta...
متن کاملInvestigation of Polymorphisms in Non-Coding Region of Human Mitochondrial DNA in 31 Iranian Hypertrophic Cardiomyopathy (HCM) Patients
The D-loop region is a hot spot for mitochondrial DNA (mtDNA) alterations, containing two hypervariable segments, HVS-I and HVS-II. In order to identify polymorphic sites and potential genetic background accounting for Hypertrophic CardioMyopathy (HCM) disease, the complete non-coding region of mtDNA from 31 unrelated HCM patients and 45 normal controls were sequenced. The sequences were aligne...
متن کاملThe Use and Effectiveness of Triple Multiplex System for Coding Region Single Nucleotide Polymorphism in Mitochondrial DNA Typing of Archaeologically Obtained Human Skeletons from Premodern Joseon Tombs of Korea
Previous study showed that East Asian mtDNA haplogroups, especially those of Koreans, could be successfully assigned by the coupled use of analyses on coding region SNP markers and control region mutation motifs. In this study, we tried to see if the same triple multiplex analysis for coding regions SNPs could be also applicable to ancient samples from East Asia as the complementation for seque...
متن کاملSingle Nucleotide Polymorphisms and Microarray Technology in Forensic Genetics - Development and Application to Mitochondrial DNA.
Variations in the genome, due to base substitutions, insertions, or deletions at single positions, are known as single nucleotide polymorphisms (SNPs). Approximately 85% of human variation is based on such polymorphisms. Therefore, there is an abundance of human SNPs that are available for forensic identity testing purposes. SNP analyses also may be suitable for some forensic identity cases, be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of forensic sciences
دوره 50 2 شماره
صفحات -
تاریخ انتشار 2005